let-7 and miR-140 microRNAs coordinately regulate skeletal development.

نویسندگان

  • Garyfallia Papaioannou
  • Jennifer B Inloes
  • Yukio Nakamura
  • Elena Paltrinieri
  • Tatsuya Kobayashi
چکیده

MicroRNAs (miRNAs) play critical roles in multiple processes of skeletal development. A global reduction of miRNAs in growth plate chondrocytes results in defects in both proliferation and differentiation; however, specific microRNAs responsible for these defects have not been identified. In this study, we provide evidence that let-7 miRNAs and microRNA-140 (miR-140), among other miRNAs expressed in chondrocytes, play major roles in endochondral bone development. We overexpressed lin-28 homolog A (Lin28a) to inhibit let-7 miRNA biogenesis in growth plate chondrocytes. Lin28a overexpression efficiently and specifically reduced let-7 miRNAs and up-regulated let-7 target genes. However, unlike the previous notion that let-7 miRNAs inhibit proliferation and growth, suppression of let-7 miRNAs via Lin28a overexpression decreased proliferation in growth plate chondrocytes, likely through up-regulation of the let-7 target cell cycle regulators cell division cycle 34 (Cdc34) and E2F transcription factor 5 (E2F5). Deficiency of the chondrocyte-specific miRNA, miR-140, causes a differentiation defect in growth plate chondrocytes. Although either Lin28a overexpression or miR-140 deficiency alone caused only mild growth impairment, mice with both miR-140 deficiency and Lin28a overexpression in chondrocytes showed a dramatic growth defect. Deregulation of distinct processes in the absence of these miRNAs synergistically decreased the proliferating chondrocyte mass; miR-140 deficiency reduced differentiation into proliferating chondrocytes, whereas Lin28a overexpression decreased proliferation per se.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct microRNA expression profiles in prostate cancer stem/progenitor cells and tumor-suppressive functions of let-7.

MiRNAs regulate cancer cells, but their potential effects on cancer stem/progenitor cells are still being explored. In this study, we used quantitative real-time-PCR to define miRNA expression patterns in various stem/progenitor cell populations in prostate cancer, including CD44+, CD133+, integrin α2β1+, and side population cells. We identified distinct and common patterns in these different t...

متن کامل

Tumor and Stem Cell Biology Distinct microRNA Expression Profiles in Prostate Cancer Stem/Progenitor Cells and Tumor-Suppressive Functions of let-7

MiRNAs regulate cancer cells, but their potential effects on cancer stem/progenitor cells are still being explored. In this study, we used quantitative real-time-PCR to define miRNA expression patterns in various stem/progenitor cell populations in prostate cancer, including CD44þ, CD133þ, integrin a2b1þ, and side population cells. We identified distinct and common patterns in these different t...

متن کامل

The GATA Factor elt-1 Regulates C. elegans Developmental Timing by Promoting Expression of the let-7 Family MicroRNAs

Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progressio...

متن کامل

A let-7-to-miR-125 MicroRNA Switch Regulates Neuronal Integrity and Lifespan in Drosophila

Messenger RNAs (mRNAs) often contain binding sites for multiple, different microRNAs (miRNAs). However, the biological significance of this feature is unclear, since such co-targeting miRNAs could function coordinately, independently, or redundantly with one another. Here, we show that two co-transcribed Drosophila miRNAs, let-7 and miR-125, non-redundantly regulate a common target, the transcr...

متن کامل

Differentiation-associated microRNAs antagonize the Rb–E2F pathway to restrict proliferation

The cancer-associated loss of microRNA (miRNA) expression leads to a proliferative advantage and aggressive behavior through largely unknown mechanisms. Here, we exploit a model system that recapitulates physiological terminal differentiation and its reversal upon oncogene expression to analyze coordinated mRNA/miRNA responses. The cell cycle reentry of myotubes, forced by the E1A oncogene, was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 35  شماره 

صفحات  -

تاریخ انتشار 2013